If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2-4a-1=0
a = 6; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·6·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{10}}{2*6}=\frac{4-2\sqrt{10}}{12} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{10}}{2*6}=\frac{4+2\sqrt{10}}{12} $
| 0.1x2+0.5x+15=0 | | 3r+4+4=r+2 | | 15(x·x·x)+112x^2-20x-32=0 | | 4p^2-5p-51=0 | | x-8/3+8/3=-x/5 | | 5x-59=3x-9 | | 3r(4+2)=r+4 | | X+x×0.2=100 | | x°-9x+13=0 | | 14+2n-6+8n=4n-22+n+34 | | x2-9x+13=0 | | y÷5=9 | | 5x+37=321 | | 4x=4. | | 2x+1=13. | | 7x-5=10x-32 | | 3x+13=4x+21 | | 9+2q=19 | | 15x+3=19x+5 | | 5n+10=16+3n | | 15x+3=19x+2 | | 5/12x=125 | | 4(12/5-3/5)-5y=17 | | 8+4x+1/7x=226/21 | | 5(x+2)+7=3x+23 | | 5x-9+(-3)(x+2)=6x-17 | | 3/4x-3/10=-51/220 | | 3x+8=50+5x | | 48=2x+10 | | 1/3x+6=4 | | 23z=−8 | | X^3-12x^2+44x-48=40 |